

Distributed deadline computing for real-time brain imaging analysis

Daniel Suo¹, Grant Wallace¹, Mihai Capota⁴, Benjamin Hutchinson², Megan deBettencourt³, Anne C. Mennen¹, Yida Wang⁴, Theodore Willke⁴, Nicholas Turk-Browne⁵, Kenneth Norman¹, Jonathan Cohen¹, Kai Li¹ ¹Princeton University, ²Northeastern University, ³University of Chicago, ⁴Parallel Computing Lab, Intel Corp., ⁵Yale University

Pre-

processing

Modeling & analysis

Introduction

Real-time fMRI enables online analyses, experiments, diagnoses, and neurofeedback-based treatment

Cloud computing allows users to rent arbitrary computing resources, providing modular, scalable, and maintainable infrastructure

How can cloud-computing infrastructure be used to expand the scope of real-time analyses?

Results

1. Prototype cloud system for processing TRs in real time

Whole-brain and spatially-distributed

MVPA: Pattern

4,000 -

3,000

2,000

1,000

(00)

10

no

of Activity

Distribution of TR processing time

Ctat		
Stat m	ean:	763
5	50%:	687
7	75%:	722
Ç)5%:	1,259
9	<i>9</i> %:	1,531
99	.9%:	2,103

Real-time fMRI

Offline (N=24): training a perceive / retrieve classifier

Learn 64 face-scene pairs

the image

Perceive: label **Retrieve**: recall

Total Cloud: 1,500 ms (~\$40) vs. 56,240 ms locally

500 ms	174 ms	106 ms	720 ms
Reconstruction	Tx	Pre- processing	RtFCMA

2. Generalize predictive capability across subjects

Whole-brain connectivity-based analysis shows initial promise

Possible that models trained on one group applicable to others

This analysis would be infeasible if run locally (~37x slower per TR)

References .

Wang, Yida, et al. "Full correlation matrix analysis (FCMA): An unbiased method for task-related functional connectivity." Journal of neuroscience methods 251 (2015): 108-119. Wang, Yida, et al. "Real-time full correlation matrix analysis of fMRI data." Big Data (Big Data), 2016 IEEE International Conference on. IEEE, 2016.

Sulzer, James, et al. "Real-time fMRI neurofeedback: progress and challenges." Neuroimage 76 (2013): 386-399. Hutchinson, J. Benjamin, Yida Wang, and Nicholas Turk-Browne. "Overlap and separation of remembered and perceived visual information in the human medial temporal lobe." Journal of Vision 16.12 (2016): 1429-1429.

Discussion

Cloud computing enables analyses such as FCMA for practitioners without access to hardware, software, or systems expertise

In addition to making new analyses tractable, may also accelerate existing work by running many analyses simultaneously

A collaboration among the authors' institutions is developing a service to provide cloud computing for practitioners. Please contact us if you're interested!

Analysis performed using the BrainIAK Python package for high-performance neuroimaging analysis. For additional information, see brainiak.org/ohbm2018

