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Representational similarity analysis (RSA)!*4!
finding the brain’s representational structure
from neural iImaging data
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When temporal similarity is mistaken for representational similarity:
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a Bayesian approach to redu

ce bias in RSA of tMRI data
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True activity
patterns 8

Bias in standard RSA

An example decision making task:
transitions between task states

follow a Markov process!?!
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Representational similarity structure
iIn one brain area appears to reflect
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Source of the bias

Recall: general linear model
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Simulate signals with a hypothetical
covariance structure and the design matrix
of the 16-state task

BrainlAK

Performance

Add simulated signals to a subset
of voxels within an area of
resting-state fMRI data
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But similar structure is also found
when applying RSA to white noise

Similarity measured by
Pearson correlation
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Task-related structure should not exist in white noise.
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Dissimilarity measured by
Fuclidean distance
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There must be a bias.

BrainlAK

2 design matrix X <

Bayesian

Goal: to estimate covariance structure of activity patterns directly
from data, without using point estimates of patterns.

U: shared covariance structure
of patterns within ROI.
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The bias structure depends on the structure of the task
and the property of the noise.

RSA®

Generative model

L: Cholesky factor
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Model cross-validation

Solution: contrasting a full Bayesian RSA model with

Its corresponding null model.
Null model: no task-related responses
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Full model does not win when
data lack task-related signals

Successfully accepting full
model when both data have
task-related signals
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* Try to counter-balance task

* Consider Bayesian RSA, cross-run RSA or crossnobis distance!”! as they are less biased

structure

*Scan more data from each participant when SNR is low
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