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Matrix-variate normal model makes
spatiotemporal covariance tractable

One generative model includes
many existing analyses

Yi | Fi,Bi,Wi,Σi,Ω ∼

MN (FiZ+BiX+ JW, ρ2iΣ,Ω)

Fi | C,U ∼ MN (0,C,U)

Z | D,V ∼ MN (0,D,V)

Bi | G,K ∼ MN (β0,G,K)

Wi | H,R ∼ MN (W0,H,R).

• Yi: data for subject i. X/J are temporal/spatial design matrices.

• This poster: temporal cov. Ω is AR(1), spatial Σ is diagonal.

BrainIAK

Analysis performed using the BrainIAK python package for
high-performance neuroimaging analysis. For additional in-
formation, see brainiak.org/sfn2017

Matrix-Normal RSA: faster and more
accurate at large data and/or low SNR

• Mitigates bias like BRSA ([1];
poster 260.05).

• Fewer parameters (different noise
model).

• Try both!
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• Resting state data, unre-
lated design matrix

• FZ should absorb all
variance, B → 0,K → 0.

• MN-RSA more con-
servative under null
for most subjects.
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Covariance values estimated
 under null

Matrix-normal ISFC: maximum-
likelihood estimation, valid correlations
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Matrix-Normal SRM: improved
reconstruction, fewer parameters

• ECM algorithm for fast estima-
tion.

• Better out-of-sample recon-
struction than SRM ([2]; poster
260.08) but worse feature selection
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brainiak.matnormal: a prototyping
tool for matrix-normal models

MN-RSA can be implemented in ≈50 lines of code!

r s a cov = CovFullRankCholesky ( s i z e=k)
spa c e no i s e c ov = CovDiagonal ( s i z e=v)
t ime no i s e cov = CovAR1( s i z e=t )
params = [ r sa cov . g e t op t im i z e va r s ( ) ,

t ime no i s e cov . g e t op t im i z e va r s ( ) ,
s pa c e no i s e c ov . g e t op t im i z e va r s ( ) ]

l o s s = −( t ime no i s e cov . logp +
spac e no i s e c ov . logp +
rsa cov . logp +
matnorm logp marginal row (Y, row cov=t ime no i s e cov ,

c o l c ov=space no i s e cov ,
marg=X, marg cov=rsa cov ) )

opt imize r . minimize ( l o s s )
U = rsa cov . Sigma
C = cov2corr (U)

Automatic marginalization and covariance structure selection.
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